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Abstract—This paper presents a boundary element formulation that can be used for traction free
or pressurized central, edge or branch cracks. The problems associated with the evaluation of
integrals containing higher order singularities, which have forced many researchers to modify the
boundary integral equations, are overcome in this paper. This permits the use of traction boundary
conditions with no modification or addition to the number of unknowns. Comparison of results for
conforming and non-conforming elements in modeling of cracks reveals that the oscillation in
stresses near the crack tip for non-conforming elements used in the past makes the stress intensity
factor dependent on the points used in its calculation. Stress intensity factors are calculated using
three different methods. Numerical results for central. edge and branch cracks validate the ideas
presented in this paper.

I. INTRODUCTION

The boundary element method has proven to be an effective technique for calculating
stresses, displacements and stress intensity factors in crack analysis. Most of the for-
mulations in the literature (Portela er. al., 1992; Sur and Altiero. 1988 ; Cruse, 1988;
Crouch, 1976) are for the direct version of the boundary element method. Another common
feature of the published work is the use of numerical integration schemes for evaluating
the integral equations. The reliance on numerical integration has forced the authors of
published work to devise schemes that overcome the problems associated with the second
order singularities that arise in the integral equations. Boundedness of stresses at points
other than the crack tips requires that the density function and its first derivative must be
continuous. This continuity requirement, particularly for the derivative of the density
function, has often been ignored at the element end points and in this sense the published
work shows use of only non-conforming elements in crack analysis.

In this paper a formulation based on the indirect boundary element method is
presented. The crack is modeled using displacement discontinuity and the associated fun-
damental solution. For interior cracks the adaptation of ideas of direct BEM to indirect
BEM is straight forward, but for edge cracks the interaction between the density function
used for modeling the crack and the density function used for modeling the boundary
causes severe numerical perturbations. The source of these numerical perturbations is
explained and the problem is rectified by introducing an element that extends outside the
real body. In the analysis of branch cracks the various density functions used in modeling
each branch are related at the branch point. The relationship between the density functions
at the branch point reported in this paper is different than that published by Liu and Altiero
(1991). The higher order singularities require no separate schemes as the integration is done
analytically. The analytical integration uses an iterative algorithm that is valid for any
order of polynomial approximation as described in the second author’s earlier works
(Vable, 1985 Vable and Zhang, 1992). Conforming and non-conforming elements are used
for modeling the crack. Stress intensity factors are calculated using the J-integral, least
square, and crack opening displacement methods. Numerical results for straight, edge and
branched cracks show good correlation with analytical results.
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2. BOUNDARY INTEGRAL EQUATIONS

The integral equations are formulated using the singular solutions associated with a
point force F, and a point displacement discontinuity ¢;. Let (uF), (P, S) represent the
displacement w; at the field point P due to a unit value of F, applied at the source point S.
Similarly, let (uc) (P, S) represent the displacement u, at the field point P due to a unit
value of ¢, applied at the source point S.

By distributing the point force F, on the boundary I'y and the displacement dis-
continuity ¢, on the crack boundary I'- we obtain by superposition :

u(P) =§ (uF)i (P, S)F(S) dS(S)JrJ (ue)i (P, S)cr(S) ds(S) ()

e

The boundary I'; represents the boundaries of the body, which can be simply or multiply
connected. The crack boundary I'c represents the path of one or more cracks, which can
be smooth, kinked, branch, or edge cracks. Similarly, the stress equation can be written as:

o,(P) = ﬁ (O'F)ijk(PeS)FA(S)dS(S)+J (0¢) (P, S)cr(S) ds(S) )

e

where (oF), and (oc); are obtained by differentiation of (uf), and (uc), with respect to
the field point P.
Let the displacement and traction boundary conditions be given as:

u(P) = u(P) 3)
o,(P)n(P) = 1,(P) )

where n,(P) are the direction cosines of the unit normal at point P on I'y or I'c. The
unknown density functions for F, and ¢, are determined by satisfying equations (3) or (4)
with P on I'p, and zero traction when P is on I'¢. The influence function (o¢),, has a second
order singularity when P is on I'¢ in equation (2). Sur and Altiero (1988) addressed the
problem of the higher order singularity by transforming equation (2). The transformation
may be derived by multiplying eqn (2) by n, and integrating from infinity to some point P
to obtain

IL(P) =§ (I1F)y(P. S)F(S) dS(S)+J (Ie)y (P. S)e(S) ds(S) (%)
Ty ~

re

In writing the above equation it is assumed that the body is in equilibrium and the function
I, is zero at infinity. The function II; represents the integration of traction on the arc
between a point at infinity and point P. Now consider the integration of the traction along
the boundary from point P, to P. IT,(P) can be written as

IL,(P) = H,(P0)+J’P t;ds (6)

Po

where TT,(P,) represents the integration of traction from infinity to point P, and is an
unknown constant that will be determined from the boundary conditions. For each con-
tinuous boundary segment on which ¢, is specified, there will be a different point P, with a
different unknown constant IT,(P,).

Sur and Altiero (1988) use eqn (6) when P is on I'c.. In this paper boundary conditions
given by both equations (4) and (6) are considered. The higher order singularity poses no
special difficulty due to the recursive analytical integration scheme used in this paper.
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3. EDGE CRACK

The density function F, represents the jump in traction #, as one crosses the boundary
I'y from the interior to the exterior of the body. Similarly, the density function ¢, represents
the jump in the value of displacement u, as one crosses the crack from one side to the other.
To understand the interaction of these two density functions near the edge crack, consider
Fig. 1. As one moves along the crack, the density function ¢, has a finite value in the interior
that should go to zero in the exterior to reflect that there is no crack in the exterior. This
generates large stress gradients in the exterior at the crack opening which are reflected in
the exterior tractions and hence in F,. Though it is possible to model these large gradients
in F, by making a fine mesh near the crack opening, it is a needless use of computer
resources to model an artifact of the method. A simpler solution is to extend the crack into
the exterior and model it with a single element. Good correlation with analytical results is
obtained by extending the crack by five crack lengths into the exterior and modeling it
using a single element with a linearly varying density function which equals the value and
slope at the crack end as shown in Fig. 1. When extending a large crack into a hole the
extension is stopped at the center of the hole, which is as far from the boundary as possible.
The extension introduces no additional unknowns.

4. BRANCH CRACK

Let the density function ¢, = u; —u; where u;” and u, represent the displacement on
the right and left surfaces respectively as one moves along the crack in the direction of
integration in eqn (1). Three crack segments forming a branch point with displacements on
each side of the crack are shown in Fig. 2. Continuity of displacements at corners A, B,
and C requires

2- 2
ult = uf wt

@ =l Y

It may be verified by substitution that the following relationship is true.

e —we )+ —u )+ —u ) =0 ®)

c+ci4ci =0 )

In writing eqn (9) it was assumed that integration on each branch started at the branch
point. This requirement can be dropped by defining the starting point as positive and ending
point as negative. The implication of eqn (9) can be better understood by an analogy
interpreting the density function as a current in an electrical circuit. The total current

Fig. 1. Edge crack without extension and with linear extension.
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i G

Fig. 2. Displacements at the branch point of a branch crack.

(density function) flowing into a junction (branch point) is equal to the total current flowing
out.

The value of I, at the branch point P, is the same irrespective of the path used to
reach it. Let P,, P, and P; be the starting points for integration for the three branches
shown in Fig. 3. Equation (6) can be written for each branch as

P P,

f) P,
fds = H,-(P1)+J £ ds = H,-(P3)+J 1,ds (10)
P

P,

Hi(PJ) = Hi(Pl)‘*'j

P, 3
Consider eqn (6) for point P on branch 2 starting from point P,. The integration constant
IT,(P,) can be solved in terms of IT,(P,) and substituted to obtain the following.

P i
,(P) = H,(P3)+J f,ds = H,(Pl)+f 1, ds (11)

P P,

Equation (11) implies that for pressurized cracks we can use a single unknown constant
but we must specify the value of integrated traction for all branches starting from the same
reference point.

Liu and Altiero (1991) presented conditions on ¢, and T, which are different from
those presented in this paper. It is the author’s opinion that the conditions presented by
Liu and Altiero are only valid for kinked cracks that are traction free. Equations (9) and
(11) are more general and valid for any number of branches with or without tractions.

5. STRUCTURE OF FUNDAMENTAL SOLUTIONS

Most fundamental solutions for isotropic bodies are a linear combination of four
singular functions and a polynomial function (see Vable, 1985; Vable and Zhang, 1992) as
given below.

Fig. 3. Branch crack condition.
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jxy* = Re [___(rx+fry)":| kxy* = Im [*(r‘dl_fr"):]
(ry—1ry)’ ’ (ry—ir,)
r
r

by = ()'(r) log ()~ txy*’ = (r)'(r,)’ atan ()

>

pxy"/ = (r)'(ry)’ (12)

where

=1

e}

re=x(P)=x(S) r,=y(P)=p(S) r=r+r

In appendix A the fundamental solutions used in this paper are given in terms of the
above functions. The structure is exploited in the development of the recursive analytical
integration scheme detailed briefly in this paper.

6. PROBLEM DISCRETIZATION

The integral expressions in eqns (1), (2) and (5) are reduced to algebraic expressions
with the following assumptions.

1. Assume that the density functions can be represented by polynomials over M elements.
The total number of unknowns generated depends upon the polynomial order and the
degree of function continuity required at each end of the mth element.

2. Assume that each of the mth elements can be represented by N, straight line segments
that are tangential to the boundary. This assumption does not increase the number of
unknowns but models the curvature of the boundary more accurately.

The polynomials are expanded by Taylor series about the midpoint of each segment. The
assumptions reduce the problem of integration in equations (1), (2) and (5) to the evaluation
of the following integral.

Li2
Gxy*/ = j trgxy” dt (13)

~L/2

where gxy™/ is one of the five functions given by equation (12) and the integration is over
straight line segments. The integrals can be evaluated analytically by the recursive algorithm
given in Vable (1985) for any order of polynomial (k) with any integer order of singularity
(j—1) in the influence functions. This recursive analytical integration scheme is also used
to evaluate the singularity contribution by constructing an epsilon segment with the singular
point in the center. The difficulties associated with higher order singularities with numerical
integration have not been encountered with the recursive analytical integration scheme
described above.

An algorithm (Ammons and Vable, 1995) evaluates the coefficients of interpolation
polynomials based on user specified polynomial order and continuity requirements at the
end points. This algorithm provides the flexibility to choose conforming or non-conforming
elements for use with any integer order of singularity in the influence functions.

7. STRESS INTENSITY FACTORS

Stress intensity factors are calculated using three different methods. (i) By the J-integral
method as used by Portela er al. (1992) in BEM. This scheme was modified slightly to
incorporate the tractions on the surface of a pressurized crack. (ii) Using the crack opening
displacement method, based on the value of ¢, near the crack tip, as used by Sur and Altiero
(1988) in BEM. (iii) By using four terms of a series solution for stresses near the crack tip,



1858 B. A. Ammons and M. Vable

as used by Miskioglu et al. (1987) for experimental calculation of stress intensity factors,
in conjunction with the least square method. A simplified representation of the series is
given in Appendix B.

The J-integral method requires the evaluation of additional integral expressions for the
displacement gradients. The crack opening displacement method depends on the polynomial
approximation and the location of the node. The least square method overcomes the
shortcomings of the above two methods, however it is more sensitive than the J-integral to
the points used in the calculation. However, if the points are chosen as described in the
examples, then the three methods produce comparable results.

8. RESULTS

Three numerical examples validate the ideas described in this paper. A circle with 25
points at equally spaced angular intervals in conjunction with the trapezoidal rule is used
for numerical evaluation of the J-integral. The radius of the circle is chosen slightly larger
than the distance where the numerical perturbations in tractions near the crack tip die out
as demonstrated in example 1. In the least square method three circular arcs symmetrically
placed with respect to the crack tip and subtending an angle of 240 are used for determining
the stress intensity factors. Each arc has nine equally spaced points for a total of 27 sample
points at which stresses are found and used for determining the 12 constants by the least
square method. The stress intensity factors are compared with known analytical values.

Example | : Pressurized straight crack in an infinite medium

A crack of 2 units length has a uniform compressive pressure of 1 unit. This simulates
the classic problem of a crack in an infinite medium subjected to a uniform tensile normal
stress perpendicular to the crack. The problem is solved in the following three ways.

(i) ¢ is approximated by piecewise continuous linear functions that are forced to zero at
the crack tips. Integrated traction boundary conditions given by eqn (5) are used. A
total of 52 unknowns is used for modeling the crack. This approximation is similar to
that reported by Sur and Altiero (1988) for the direct method.

(i1) ¢, is approximated by piecewise quadratic functions that are discontinuous at each
element end and are not forced to zero at the crack tips. Traction boundary conditions
given by eqn (4) are used. A total of 54 unknowns is used for modeling the crack. This
approximation is similar to that used by Portela er /. (1992) for the direct method.

(iii) ¢, 1s approximated by cubic hermite polynomials that ensure function and derivative
continuity at each element end, and the value of ¢, is forced to zero at the crack tips.
Traction boundary conditions given by eqn (4) are used. A total of 52 unknowns is
used for modeling the cracks. This approximation uses fuily conforming elements with
second order singularities.

Figure 4 shows the variation of traction starting at the crack tip and moving along the
crack length. The theoretical value of traction should be — 1 but due to numerical error the
calculated value varies along the crack length. The linear and the quadratic approximations
show large oscillations in the traction values near the crack tip which diminish away from
the crack tip. The spikes in the traction values are due to violation of the continuity
requirements at the element ends. With the cubic conforming elements the oscillations die
out very rapidly and a value close to — 1 is obtained after one twentieth of a crack length.
It is possible that with other mesh discretizations the length over which these oscillations
occur may change, but the basic conclusion that non-conforming elements introduce
numerical perturbations near the points where continuity conditions are violated is unlikely
to change.

The importance of the oscillations in traction shown in the figures is two fold : (a) The
radii of the circles used for the J-integral and the least square methods should be selected
such that the effect of the oscillations is minimal. Since the range of these oscillations is not
known a priori, a rule of thumb is to use a circle that passes approximately through the
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Fig. 4a. Variation of traction along surface of crack for linear elements.
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Fig. 4c. Variation of traction along surface of crack for cubic elements.

middle of the third element. The middle of the element is chosen to avoid the spikes that
occur at the element ends in non-conforming elements. (b) In elastic—plastic analysis in
which the stresses are found iteratively in the plastic zone at the crack tip, the use of
non-conforming elements may cause severe convergence problems due to the numerical
oscillations,

A circle of radius 0.15 was used to evaluate the stress intensity factor by the J-integral
method. Radii of 0.12, 0.15 and 0.1875 were used in the calculation of stress intensity
factors by the least square method. Table 1 shows the non-dimensionalized stress intensity
factor for the three approximations. Results of all three approximations compare favorably



1860 B. A. Ammons and M. Vable

Table 1. Non-dimensional stress intensity factors for straight crack

Least Condition
Approximation  J-integral squares  Unknowns number CPU time
Linear 0.999 1.002 52 8.8 0.30s
Quadratic 1.001 1.006 54 493.4 0.36s
Cubic 0.999 1.001 52 613.1 043 s

with the theoretical value of 1.000 for the non-dimensionalized stress intensity factor. The
low condition numbers shown in Table 1 are a testimony to the stability of the three
approximations. The small ¢.p.u. times on the Sun Sparcstation IPX computer demonstrate
the attractiveness of BEM for crack analysis.

Example 2 : Edge cracks

A disc under uniform tension with an edge crack (interior problem) and a pressurized
hole with an edge crack (exterior problem) are shown in Fig. 5. The dotted line represents
the extension of the crack outside the body. Both problems were solved with and without
the extension using 24 unknowns to model the crack and 66 to model the circular boundary.
Except for the extension, the meshes were identical for all four cases studied. The objective
of presenting the four cases is to demonstrate the effect of crack extension. This effect
can be demonstrated adequately using the piecewise linear representation for the density
functions and integrated traction boundary conditions on the crack.

Fig. 5a. Disk with edge crack (interior problem).

Fig. 5b. Hole with edge crack (exterior problem).
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Figure 6a shows the crack opening displacement for the exterior problem as one moves
from point A to point B. For the crack with no extension, Fig. 6a shows the trend in ¢,
from a finite value in the interior toward the zero value it should have in the exterior at
point B. This sudden drop in ¢, at point B introduces large stress gradients outside the body
that are reflected as spikes in the fictitious traction density function F; at the crack/boundary
intersection shown in Fig. 6b and 6¢. Figure 6a, 6b, and 6¢ shows that both ¢, and F,
behave smoothly when the crack is extended outside the body. Similar trends were observed
for the interior problem which are not presented in the paper for the sake of brevity.
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Table 2. Non-dimensional stress intensity factors for hole with edge crack

Crack Least Condition
a/R opening J-integral squares Reference® number
1.0 1.202 1.224 1.233 1.226 1060
0.5 1.457 1.481 1.492 1.480 1846
0.1 1.935 1.971 1.984 1.988 57415

*Murakami (1987), 242.

Table 3. Non-dimensional stress intensity factors for disk with edge crack

Crack Least Condition
a/R opening J-integral squares Reference® number
1.0 3.047 3.077 3.084 3.129 646
0.5 1.722 1.749 1.758 1.739 1282
0.1 1.198 1.219 1.227 1.218 22879

*Tada (1973), 11.13.

The stress intensity factors for the interior and exterior problems for different ratios
of crack length to the radius of the circular boundaries are presented in Table 2 and Table
3. The results are reported for solutions with crack extensions only because the results with
no crack extension were found to be nonsensical. The stress intensity factors calculated
from the crack opening displacement are also reported. The stress intensity factors once
more show good correlation with the known analytical values. Notice the increase in matrix
conditioning number as the ratio of a/R decreases. The increase in condition number is
warning that very small cracks near very large boundaries may cause numerical difficulties.

Example 3 : Branch cracks

A branch crack in an infinite plane subjected to uniform uniaxial tension g, can be
modeled as a pressurized crack with zero stresses at infinity. The geometry of the crack is
shown in Fig. 7. Twenty-two elements were used on the main branch starting at A and 12
elements were used on each of the other two branches. The mesh was uniform for each
branch except for the last two elements at each end of the branch. These last two elements
had the length of one fourth and three fourths of the length of the uniform elements. The
displacement discontinuity ¢, was forced to zero at the crack tips A, B, and C. Liu and
Altiero (1991) solved a similar branch crack problem, but it was enclosed in a finite
rectangular body. The difference between the traction free crack of Liu and Altiero and the
pressurized crack of this paper is reflected in the conditions represented by eqn (10).
Stress intensity factors were calculated by the J-integral, least square, and crack opening
displacement methods. Results for several b/a ratios were calculated and compared with

/B
%
y 45°
A J

>
>

« 2c

Fig. 7. Geometry of branch crack.
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Table 4. Non-dimensional stress intensity factors for branch cracks

Crack Least Condition
bia opening J-integral squares Reference® number
0.05 F? 0.582 0.593 0.596 0.593 11.6

Fi 0.290 0.297 0.305 0.297
FP 0.985 1.004 1.012 1.006
0.6 Fp 0.486 0.496 0.500 0.497 14.9
Fi 0.474 0.484 0.490 0.485
F} 1.008 1.027 1.034 1.029

*Murakami (1987). 375.

analytical results reported in Murakami (1987). Results for two ratios of h/a are reported
in Table 4.

Results in Table 4 show good correlation with analytical results. The condition at the
junction J can be expected to affect the stresses at crack tip B for very small ratios of b/a.
The good correlation of analytical and calculated results for the ratio /a = 0.05 validates
that the conditions at junction J given by equations (9) and (11) for pressurized cracks are
correct.

The c.p.u. time on the Sun Sparcstation IPX for each ratio of »/a was 1.35 seconds.
This small c.p.u. time vividly demonstrates the effectiveness of the boundary element
method for branch cracks.

9. CONCLUSIONS

This paper demonstrates that the indirect boundary element method is an effective
tool for the numerical analysis of deformation and stress in the vicinity of central, edge,
and branch cracks that are pressurized or traction free. Results of non-conforming elements
reveal that there is oscillation in stresses near the crack tip and spikes in the stresses at
element ends, making the stress intensity factor very susceptible to the points used in its
calculation. This oscillation problem can be alleviated by using conforming elements. The
use of iterative analytical integration over each element overcomes the problems of higher
order singularities reported in the past literature, permitting the use of either traction or
integrated traction boundary conditions on the crack surface.

Results reported in this paper were obtained using the BEAMUP program, which is
an acronym for Boundary Element Analysis from Michigan’s Upper Peninsula. BEAMUP
is a general purpose two-dimensional program that can solve problems in elastostatics,
plate bending, or problems represented by Poisson’s equation. The solution technique used
by BEAMUP can be the direct or indirect BEM. The interpolation function for each
element can be any order of polynomial and satisfy any order of continuity between
elements. Different types of singularities with any integer order of singular behavior can be
modeled by simple modification of the program. The BEAMUP program provides a
common platform for comparison of different methodologies and approximations as was
done in this paper.

Research is in progress to implement the ideas described in this paper for cracks at
interfaces of dissimilar elastic materials.

Acknowledgement— This material is based upon work supported under a National Science Foundation Graduate
Research Fellowship.
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APPENDIX A. INFLUENCE FUNCTIONS

The influence functions used in this paper are described in terms of the five functions given by (12). The
influence functions are for an isotropic material with plane stress, where E is Young’s modulus, and v is Poisson’s
ratio.

Influence functions for displacements due to unit force:
I+v .
WP = g [(1+ixy™ =26 =v)hy™]

(uF),y, (1 +v)kxy"']

_ 1+\-’[
" 8nE
l +" i
(uF)yx - ST[E [(l +v)ka ]
1+v R 0.0
(uF),, = m[—(l—#v)]xy =23 - v)lxy™"] (A1)
Influence functions for stresses due to unit force:
1 feyl2 ey 01
(0F)wx = g[—(l+v)ny F= Sy
1
(0F )y = 5 [= (1 +0)kxy" 4 (1 = 3u)kny™]
° ¥
i . 5 .
(@F)y = g (A +w)ixy'? + (1= 3)jxy™]
1 2
(0F)yy = P [+ vkxy"* — (5 +v)kxy*']
1 5
(0F)y = 3 [+ v)kxy"? — (3—v)kxy"']

1
(0F)qy =5 10+ Vixy"? = (3-w)jxy™'] (A2)

Influence functions for displacements due to unit displacement discontinuity :

W) = —[(0F )ty + (0F) ]
(uc)yy = —[(6F)aytty + (0F) 0]
)y = —[(eF) 1, + (0F) ]
—[(eF),yyn+ (0F) 0] (A.3)

If

(Uc)yy

Influence functions for stresses due to unit displacement discontinuity :
E H 1.3 H 0,2 1.3 0.2
(0 = - [(—3xy™" = 2jxy" i+ (—kxy " —kxy™)n,]
E 1.3 0.2 H 1.3
(00)uy = 3 [(—Kxy' —kxy" )+ (ixy )

E . 3 2
(0)ype = = Gy )+ (exy ™ —kxy* )]
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E 1.3 0.2 : 1.3 . 0.2
(00)yy = ;[{kxy F—kxy" n H{(—jxy "+ 2jxy")ay ]
E 1.1 0.2 : 1.3
(000 = 5 (kg™ =kxy" )+ (ixy o)
P _ E[('le.l) +(k kg2 n] (A 4)
( C)x},'y - 47[ J 7 g ( ’() Xy ) ¥ *
Influence functions for integrated traction due to unit force :
] 1.1 0.0
(I1F)y = 8—7![7(1+\‘)kxy 4 —Axy™’]
1
(MF), = o [y 4201 =iy ]
1 .
(ITF),, = o [ +v)ixy" —2(1 —w)ixy™]
1
MnF),, = P [(1+v)kxy"! —4txy"} (A.5)
Influence functions for integrated traction due to unit displacement discontinuity :
E 1.2 0.1 M 1.2 : 0.1
e}y = g [(—kxy "= = 3kxy™ D+ (jry ™ +jxy™ ]
E H 1,2 H 0.1 1.2 0.1
(TT6), = o LG8y ixy™ I+ (kxy' > = 3kxy®
E H 1.2 H 0.1 12 0.1
(TL0)ye = g Gy +ixy™ I+ (kxy ' = 3kxy™ |

E .
(Me)yy = g [lexy"™ = 3kxy™ 4 (= ey + 3ixy ™ my ] (A.6)

APPENDIX B. SERIES SOLUTION FOR STRESSES NEAR CRACK TIP

The stresses in the vicinity of the crack tip are written as a series using polar coordinates with the origin at
the tip of the crack.

N
6y = Y, A,r*[cos 20— Zsin0sin (2—1)0]

n=0

¥
+ Y B,r’[2sin A8+ Asinfcos (A—1)]

"

N
+ Y Cr"[2cosnt)—nsinOsin (n— 1)8] (B.1)

n—1n
A

6y =3 A,r’[cos 20+ isinfsin (i—1)8]
n=

N
+ Y B,r’[—isinfcos (i—1)6]

n=10

N
+ Y C,r'[nsinfsin (n—1)6] (B.2)

=0
.
o= Y Ar+[—isinfcos(2—1)6]
n=40

A
+ Y. B,r’[cos i~ Zsin@sin (4.~ 1)6]

Pt
+ ‘Z{ C,r'[—sinnf —nsin 0 cos (n— 1)0] (B.3)
P
where
=R~ A4, = i; B, = KL (B.4)
NP1 V2n
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